300 research outputs found

    Adaptive thresholding for reliable topological inference in single subject fMRI analysis

    Get PDF
    Single subject fMRI has proved to be a useful tool for mapping functional areas in clinical procedures such as tumour resection. Using fMRI data, clinicians assess the risk, plan and execute such procedures based on thresholded statistical maps. However, because current thresholding methods were developed mainly in the context of cognitive neuroscience group studies, most single subject fMRI maps are thresholded manually to satisfy specific criteria related to single subject analyses. Here, we propose a new adaptive thresholding method which combines Gamma-Gaussian mixture modelling with topological thresholding to improve cluster delineation. In a series of simulations we show that by adapting to the signal and noise properties, the new method performs well in terms of the trade-off between false negative and positive cluster error rates as well as in terms of over and underestimation of the true activation border. We also show through simulations and a motor test-retest study on ten volunteer subjects that adaptive thresholding improves reliability, mainly by accounting for the global signal variance. This in turn increases the likelihood that the true activation pattern can be determined

    Test-retest reliability of structural brain networks from diffusion MRI

    Get PDF
    Structural brain networks constructed from diffusion MRI (dMRI) and tractography have been demonstrated in healthy volunteers and more recently in various disorders affecting brain connectivity. However, few studies have addressed the reproducibility of the resulting networks. We measured the test–retest properties of such networks by varying several factors affecting network construction using ten healthy volunteers who underwent a dMRI protocol at 1.5 T on two separate occasions. Each T1-weighted brain was parcellated into 84 regions-of-interest and network connections were identified using dMRI and two alternative tractography algorithms, two alternative seeding strategies, a white matter waypoint constraint and three alternative network weightings. In each case, four common graph-theoretic measures were obtained. Network properties were assessed both node-wise and per network in terms of the intraclass correlation coefficient (ICC) and by comparing within- and between-subject differences. Our findings suggest that test–retest performance was improved when: 1) seeding from white matter, rather than grey; and 2) using probabilistic tractography with a two-fibre model and sufficient streamlines, rather than deterministic tensor tractography. In terms of network weighting, a measure of streamline density produced better test–retest performance than tract-averaged diffusion anisotropy, although it remains unclear which is a more accurate representation of the underlying connectivity. For the best performing configuration, the global within-subject differences were between 3.2% and 11.9% with ICCs between 0.62 and 0.76. The mean nodal within-subject differences were between 5.2% and 24.2% with mean ICCs between 0.46 and 0.62. For 83.3% (70/84) of nodes, the within-subject differences were smaller than between-subject differences. Overall, these findings suggest that whilst current techniques produce networks capable of characterising the genuine between-subject differences in connectivity, future work must be undertaken to improve network reliability

    Efficient organisation of the contralateral hemisphere connectome is associated with improvement in intelligence quotient after paediatric epilepsy surgery

    Get PDF
    ObjectiveAims of epilepsy surgery in childhood include optimising seizure control and facilitating cognitive development. Predicting which children will improve cognitively is challenging. We investigated the association of the pre-operative structural connectome of the contralateral non-operated hemisphere with improvement in intelligence quotient (IQ) post-operatively.MethodsConsecutive children who had undergone unilateral resective procedures for epilepsy at a single centre were retrospectively identified. We included those with pre-operative volume T1-weighted non-contrast brain magnetic resonance imaging (MRI), no visible contralateral MRI abnormalities, and both pre-operative and two years post-operative IQ assessment. The MRI of the hemisphere contralateral to the side of resection was anatomically parcellated into 34 cortical regions and the covariance of cortical thickness between regions was used to create binary and weighted group connectomes.ResultsEleven patients with a post-operative IQ increase of at least 10 points at two years were compared with twenty-four patients with no change in IQ score. Children who gained at least 10 IQ points post-operatively had a more efficiently structured contralateral hemisphere connectome with higher global efficiency (0.74) compared to those whose IQ did not change at two years (0.58, p=0.014). This was consistent across thresholds and both binary and weighted networks. There were no statistically significant group differences in age, sex, age at onset of epilepsy, pre-operative IQ, mean cortical thickness, side or site of procedure, two year post-operative Engel scores or use of anti-seizure medications between the two groups. ConclusionsSurgical procedures to reduce or stop seizures may allow children with an efficiently structured contralateral hemisphere to achieve their cognitive potential. <br/

    TractoR: Magnetic Resonance Imaging and Tractography with R

    Get PDF
    Statistical techniques play a major role in contemporary methods for analyzing magnetic resonance imaging (MRI) data. In addition to the central role that classical statistical methods play in research using MRI, statistical modeling and machine learning techniques are key to many modern data analysis pipelines. Applications for these techniques cover a broad spectrum of research, including many preclinical and clinical studies, and in some cases these methods are working their way into widespread routine use.In this manuscript we describe a software tool called TractoR (for “Tractography with R”), a collection of packages for the R language and environment, along with additional infrastructure for straightforwardly performing common image processing tasks. TractoR provides general purpose functions for reading, writing and manipulating MR images, as well as more specific code for fitting signal models to diffusion MRI data and performing tractography, a technique for visualizing neural connectivity

    Longitudinal microstructural MRI markers of demyelination and neurodegeneration in early relapsing-remitting multiple sclerosis:Magnetisation transfer, water diffusion and g-ratio

    Get PDF
    INTRODUCTION: Quantitative microstructural MRI, such as myelin-sensitive magnetisation transfer ratio (MTR) or saturation (MTsat), axon-sensitive water diffusion Neurite Orientation Dispersion and Density Imaging (NODDI), and the aggregate g-ratio, may provide more specific markers of white matter integrity than conventional MRI for early patient stratification in relapsing-remitting multiple sclerosis (RRMS). The aim of this study was to determine the sensitivity of such markers to longitudinal pathological change within cerebral white matter lesions (WML) and normal-appearing white matter (NAWM) in recently diagnosed RRMS. METHODS: Seventy-nine people with recently diagnosed RRMS, from the FutureMS longitudinal cohort, were recruited to an extended MRI protocol at baseline and one year later. Twelve healthy volunteers received the same MRI protocol, repeated within two weeks. Ethics approval and written informed consent were obtained. 3T MRI included magnetisation transfer, and multi-shell diffusion-weighted imaging. NAWM and whole brain were segmented from 3D T1-weighted MPRAGE, and WML from T2-weighted FLAIR. MTR, MTsat, NODDI isotropic (ISOVF) and intracellular (ICVF) volume fractions, and g-ratio (calculated from MTsat and NODDI data) were measured within WML and NAWM. Brain parenchymal fraction (BPF) was also calculated. Longitudinal change in BPF and microstructural metrics was assessed with paired t-tests (α = 0.05) and linear mixed models, adjusted for confounding factors with False Discovery Rate (FDR) correction for multiple comparisons. Longitudinal changes were compared with test-retest Bland-Altman limits of agreement from healthy control white matter. The influence of longitudinal change on g-ratio was explored through post-hoc analysis in silico by computing g-ratio with realistic simulated MTsat and NODDI values. RESULTS: In NAWM, g-ratio and ICVF increased, and MTsat decreased over one year (adjusted mean difference = 0.007, 0.005, and −0.057 respectively, all FDR-corrected p < 0.05). There was no significant change in MTR, ISOVF, or BPF. In WML, MTsat, NODDI ICVF and ISOVF increased over time (adjusted mean difference = 0.083, 0.024 and 0.016, respectively, all FDR-corrected p < 0.05). Group-level longitudinal changes exceeded test-retest limits of agreement for NODDI ISOVF and ICVF in WML only. In silico analysis showed g-ratio may increase due to a decrease in MTsat or ISOVF, or an increase in ICVF. DISCUSSION: G-ratio and MTsat changes in NAWM over one year may indicate subtle myelin loss in early RRMS, which were not apparent with BPF or NAWM MTR. Increases in NAWM and WML NODDI ICVF were not anticipated, and raise the possibility of axonal swelling or morphological change. Increases in WML MTsat may reflect myelin repair. Changes in NODDI ISOVF are more likely to reflect alterations in water content. Competing MTsat and ICVF changes may account for the absence of g-ratio change in WML. Longitudinal changes in microstructural measures are significant at a group level, however detection in individual patients in early RRMS is limited by technique reproducibility. CONCLUSION: MTsat and g-ratio are more sensitive than MTR to early pathological changes in RRMS, but complex dependence of g-ratio on NODDI parameters limit the interpretation of aggregate measures in isolation. Improvements in technique reproducibility and validation of MRI biophysical models across a range of pathological tissue states are needed

    Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort

    Get PDF
    STUDY FUNDING The data were collected by a Research into Ageing programme grant; research continues as part of the Age UK–funded Disconnected Mind project. The work was undertaken by The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross-council Lifelong Health and Wellbeing Initiative (MR/K026992/1), with funding from the BBSRC and Medical Research Council. Imaging and image analysis was performed at the Brain Research Imaging Centre (sbirc.ed.ac.uk/), Edinburgh, supported by the Scottish Funding Council SINAPSE Collaboration. Derivation of mean cortical thickness measures was funded by the Scottish Funding Council’s Postdoctoral and Early Career Researchers Exchange Fund awarded by SINAPSE to David Alexander Dickie. L.C.A.C. acknowledges funding from the Scottish Government's Rural and Environment Science and Analytical Services (RESAS) division.Peer reviewedPublisher PD
    • 

    corecore